Basic Hypergeometric Series and Applications

· Mathematical Surveys and Monographs Sách 27 · American Mathematical Soc.
Sách điện tử
124
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

The theory of partitions, founded by Euler, has led in a natural way to the idea of basic hypergeometric series, also known as Eulerian series. These series were first studied systematically by Heine, but many early results are attributed to Euler, Gauss, and Jacobi. Today, research in $q$-hypergeometric series is very active, and there are now major interactions with Lie algebras, combinatorics, special functions, and number theory. However, the theory has been developed to such an extent and with such a profusion of powerful and general results that the subject can appear quite formidable to the uninitiated. By providing a simple approach to basic hypergeometric series, this book provides an excellent elementary introduction to the subject. The starting point is a simple function of several variables satisfying a number of $q$-difference equations.The author presents an elementary method for using these equations to obtain transformations of the original function. A bilateral series, formed from this function, is summed as an infinite product, thereby providing an elegant and fruitful result which goes back to Ramanujan. By exploiting a special case, the author is able to evaluate the coefficients of several classes of infinite products in terms of divisor sums. He also touches on general transformation theory for basic series in many variables and the basic multinomial, which is a generalization of a finite sum. These developments lead naturally to the arithmetic domains of partition theory, theorems of Liouville type, and sums of squares.Contact is also made with the mock theta-functions of Ramanujan, which are linked to the rank of partitions. The author gives a number of examples of modular functions with multiplicative coefficients, along with the beginnings of an elementary constructive approach to the field of modular equations. Requiring only an undergraduate background in mathematics, this book provides a rapid entry into the field. Students of partitions, basic series, theta-functions, and modular equations, as well as research mathematicians interested in an elementary approach to these areas, will find this book useful and enlightening. Because of the simplicity of its approach and its accessibility, this work may prove useful as a textbook.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.