Axiomatic Stable Homotopy Theory

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society 610-kitob · American Mathematical Soc.
E-kitob
114
Sahifalar soni
Reytinglar va sharhlar tasdiqlanmagan  Batafsil

Bu e-kitob haqida

This book gives an axiomatic presentation of stable homotopy theory. It starts with axioms defining a 'stable homotopy category'; using these axioms, one can make various constructions - cellular towers, Bousfield localization, and Brown representability, to name a few. Much of the book is devoted to these constructions and to the study of the global structure of stable homotopy categories. Next, a number of examples of such categories are presented. Some of these arise in topology (the ordinary stable homotopy category of spectra, categories of equivariant spectra, and Bousfield localizations of these), and others in algebra (coming from the representation theory of groups or of Lie algebras, as well as the derived category of a commutative ring). Hence one can apply many of the tools of stable homotopy theory to these algebraic situations.This work: provides a reference for standard results and constructions in stable homotopy theory; discusses applications of those results to algebraic settings, such as group theory and commutative algebra; provides a unified treatment of several different situations in stable homotopy, including equivariant stable homotopy and localizations of the stable homotopy category; and, also provides a context for nilpotence and thick subcategory theorems, such as the nilpotence theorem of Devinatz-Hopkins-Smith and the thick subcategory theorem of Hopkins-Smith in stable homotopy theory, and the thick subcategory theorem of Benson-Carlson-Rickard in representation theory. This book presents stable homotopy theory as a branch of mathematics in its own right with applications in other fields of mathematics. It is a first step toward making stable homotopy theory a tool useful in many disciplines of mathematics.

Bu e-kitobni baholang

Fikringizni bildiring.

Qayerda o‘qiladi

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan audiokitoblarni brauzer yordamida tinglash mumkin.
Kitob o‘qish uchun mo‘ljallangan qurilmalar
Kitoblarni Kobo e-riderlar kabi e-siyoh qurilmalarida oʻqish uchun faylni yuklab olish va qurilmaga koʻchirish kerak. Fayllarni e-riderlarga koʻchirish haqida batafsil axborotni Yordam markazidan olishingiz mumkin.