Axes in Outer Space

· American Mathematical Soc.
電子書
104
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

The authors develop a notion of axis in the Culler-Vogtmann outer space $\mathcal{X}_r$ of a finite rank free group $F_r$, with respect to the action of a nongeometric, fully irreducible outer automorphism $\phi$. Unlike the situation of a loxodromic isometry acting on hyperbolic space, or a pseudo-Anosov mapping class acting on Teichmüller space, $\mathcal{X}_r$ has no natural metric, and $\phi$ seems not to have a single natural axis. Instead these axes for $\phi$, while not unique, fit into an ""axis bundle"" $\mathcal{A}_\phi$ with nice topological properties: $\mathcal{A}_\phi$ is a closed subset of $\mathcal{X}_r$ proper homotopy equivalent to a line, it is invariant under $\phi$, the two ends of $\mathcal{A}_\phi$ limit on the repeller and attractor of the source-sink action of $\phi$ on compactified outer space, and $\mathcal{A}_\phi$ depends naturally on the repeller and attractor.

The authors propose various definitions for $\mathcal{A}_\phi$, each motivated in different ways by train track theory or by properties of axes in Teichmüller space, and they prove their equivalence.

關於作者

Michael Handel is at CUNY, Herbert H. Lehman College, Bronx, NY

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。