Asymptotic Wave Theory

· North-Holland Series in Applied Mathematics and Mechanics 20. knjiga · Elsevier
E-knjiga
359
Broj stranica
Prihvatljiva
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Asymptotic Wave Theory investigates the asymptotic behavior of wave representations and presents some typical results borrowed from hydrodynamics and elasticity theory. It describes techniques such as Fourier-Laplace transforms, operational calculus, special functions, and asymptotic methods. It also discusses applications to the wave equation, the elements of scattering matrix theory, problems related to the wave equation, and diffraction. Organized into eight chapters, this volume begins with an overview of the Fourier-Laplace integral, the Mellin transform, and special functions such as the gamma function and the Bessel functions. It then considers wave propagation, with emphasis on representations of plane, cylindrical or spherical waves. It methodically introduces the reader to the reflexion and refraction of a plane wave at the interface between two homogeneous media, the asymptotic expansion of Hankel's functions in the neighborhood of the point at infinity, and the asymptotic behavior of the Laplace transform. The book also examines the method of steepest descent, the asymptotic representation of Hankel's function of large order, and the scattering matrix theory. The remaining chapters focus on problems of flow in open channels, the propagation of elastic waves within a layered spherical body, and some problems in water wave theory. This book is a valuable resource for mechanics and students of applied mathematics and mechanics.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.