Aspects of Brownian Motion

· Springer Science & Business Media
E‑kniha
200
Stránky
Hodnocení a recenze nejsou ověřeny  Další informace

Podrobnosti o e‑knize

Stochastic calculus and excursion theory are very efficient tools to obtain either exact or asymptotic results about Brownian motion and related processes. The emphasis of this book is on special classes of such Brownian functionals as:

- Gaussian subspaces of the Gaussian space of Brownian motion;

- Brownian quadratic funtionals;

- Brownian local times,

- Exponential functionals of Brownian motion with drift;

- Winding number of one or several Brownian motions around one or several points or a straight line, or curves;

- Time spent by Brownian motion below a multiple of its one-sided supremum.

Besides its obvious audience of students and lecturers the book also addresses the interests of researchers from core probability theory out to applied fields such as polymer physics and mathematical finance.

O autorovi

MARC YOR has been Professor at the Laboratoire de Probabilités et Modèles Aléatoires at the Université Pierre et Marie Curie, Paris, since 1981, and a member of the Académie des Sciences de Paris since 2003. His research interests – which are well illustrated in the present book – bear upon properties of Brownian functionals, either for pure or applied purposes. Recently, Marc Yor has also been working on the interface between number theory and random matrices.

ROGER MANSUY has been teaching mathematics at the Lycée Louis le Grand, Paris, since 2006. He has been working with Marc Yor – who was the supervisor of Roger Mansuy’s PhD thesis – in recent years. Prior to the present volume he and Marc Yor collaborated in publishing volume 1873 of the series Lecture Notes in Mathematics entitled "Random Times and Enlargements of Filtration in a Brownian setting".

Ohodnotit e‑knihu

Sdělte nám, co si myslíte.

Informace o čtení

Telefony a tablety
Nainstalujte si aplikaci Knihy Google Play pro AndroidiPad/iPhone. Aplikace se automaticky synchronizuje s vaším účtem a umožní vám číst v režimu online nebo offline, ať jste kdekoliv.
Notebooky a počítače
Audioknihy zakoupené na Google Play můžete poslouchat pomocí webového prohlížeče v počítači.
Čtečky a další zařízení
Pokud chcete číst knihy ve čtečkách elektronických knih, jako např. Kobo, je třeba soubor stáhnout a přenést do zařízení. Při přenášení souborů do podporovaných čteček elektronických knih postupujte podle podrobných pokynů v centru nápovědy.