Carbon And Tmds Nanostructures For Energy Applications

· World Scientific
Ebook
312
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

The world's increasing demand for energy is mainly being fulfilled by non-renewable fossil fuels. Its long-run usage is unsustainable due to depleting resources and adverse effects on the environment. To resolve these issues, researchers are transitioning toward high-performance renewable and sustainable energy sources and storage systems like electrochemical cells for hydrogen production, supercapacitors, batteries, and so forth. Currently, the main challenges to developing these systems require efficient electrode materials with properties like good electrical conductivity, high surface area, good catalytic activity, and so on. Carbon nanostructures (such as graphene and carbon nanotubes) and inorganic transition metal dichalcogenides (such as MoS2, WS2, MoSe2, etc.) are promising candidates for such energy applications owing to their unique properties and exceptional performance. This book summarizes the synthesis of carbon and TMDs to their applications in energy generation and storage. The aim of this book is to benefit the readers with recent aspects and future perspectives of carbon and TMDs-based nanomaterials dedicated to the field of energy generation and storage technologies. Also, professionals might find it useful in fabricating or characterizing these materials for targeted applications.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.