Arithmetic Fundamental Groups and Noncommutative Algebra: 1999 Von Neumann Conference on Arithmetic Fundamental Groups and Noncommutative Algebra, August 16-27, 1999, Mathematical Sciences Research Institute, Berkeley, California

·
· Proceedings of Symposia in Pure Mathematics Kniha 70 · American Mathematical Soc.
4,3
3 recenze
E‑kniha
569
Stránky
Hodnocení a recenze nejsou ověřeny  Další informace

Podrobnosti o e‑knize

The arithmetic and geometry of moduli spaces and their fundamental groups are a very active research area. This book offers a complete overview of developments made over the last decade. The papers in this volume examine the geometry of moduli spaces of curves with a function on them. The main players in Part 1 are the absolute Galois group $G {\mathbb Q $ of the algebraic numbers and its close relatives. By analyzing how $G {\mathbb Q $ acts on fundamental groups defined by Hurwitz moduli problems, the authors achieve a grand generalization of Serre's program from the 1960s. Papers in Part 2 apply $\theta$-functions and configuration spaces to the study of fundamental groups over positive characteristic fields. In this section, several authors use Grothendieck's famous lifting results to give extensions to wildly ramified covers. Properties of the fundamental groups have brought collaborations between geometers and group theorists. Several Part 3 papers investigate new versions of the genus 0 problem. In particular, this includes results severely limiting possible monodromy groups of sphere covers. Finally, Part 4 papers treat Deligne's theory of Tannakian categories and arithmetic versions of the Kodaira-Spencer map. This volume is geared toward graduate students and research mathematicians interested in arithmetic algebraic geometry.

Hodnocení a recenze

4,3
3 recenze

Ohodnotit e‑knihu

Sdělte nám, co si myslíte.

Informace o čtení

Telefony a tablety
Nainstalujte si aplikaci Knihy Google Play pro AndroidiPad/iPhone. Aplikace se automaticky synchronizuje s vaším účtem a umožní vám číst v režimu online nebo offline, ať jste kdekoliv.
Notebooky a počítače
Audioknihy zakoupené na Google Play můžete poslouchat pomocí webového prohlížeče v počítači.
Čtečky a další zařízení
Pokud chcete číst knihy ve čtečkách elektronických knih, jako např. Kobo, je třeba soubor stáhnout a přenést do zařízení. Při přenášení souborů do podporovaných čteček elektronických knih postupujte podle podrobných pokynů v centru nápovědy.

Pokračování série

Více od autora Michael D. Fried

Podobné e-knihy