Approaching (Almost) Any Machine Learning Problem

· Abhishek Thakur
4.6
리뷰 27개
eBook
300
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This is not a traditional book.

The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option.

This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along.


Table of contents:

- Setting up your working environment

- Supervised vs unsupervised learning

- Cross-validation

- Evaluation metrics

- Arranging machine learning projects

- Approaching categorical variables

- Feature engineering

- Feature selection

- Hyperparameter optimization

- Approaching image classification & segmentation

- Approaching text classification/regression

- Approaching ensembling and stacking

- Approaching reproducible code & model serving


There are no sub-headings. Important terms are written in bold.

I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions

And Subscribe to my youtube channel: https://bit.ly/abhitubesub

평점 및 리뷰

4.6
리뷰 27개

저자 정보

Abhishek Thakur is a data scientist and world's first 4x grandmaster on Kaggle. His passion lies in solving difficult world problems through data science. Abhishek did his Bachelors in Electronics Engineering from India and moved to Germany for pursuing MSc from University of Bonn, Germany with a focus on image processing and computer vision. He dropped out of PhD in 2015 and since then has been working in industries.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.