Applied Mathematical Sciences: Shape Optimization by the Homogenization Method

· Applied Mathematical Sciences ฉบับที่ 146 · Springer Science & Business Media
eBook
458
หน้า
คะแนนและรีวิวไม่ได้รับการตรวจสอบยืนยัน  ดูข้อมูลเพิ่มเติม

เกี่ยวกับ eBook เล่มนี้

The topic of this book is homogenization theory and its applications to optimal design in the conductivity and elasticity settings. Its purpose is to give a self-contained account of homogenization theory and explain how it applies to solving optimal design problems, from both a theoretical and a numerical point of view. The application of greatest practical interest tar geted by this book is shape and topology optimization in structural design, where this approach is known as the homogenization method. Shape optimization amounts to finding the optimal shape of a domain that, for example, would be of maximal conductivity or rigidity under some specified loading conditions (possibly with a volume or weight constraint). Such a criterion is embodied by an objective function and is computed through the solution of astate equation that is a partial differential equa tion (modeling the conductivity or the elasticity of the structure). Apart from those areas where the loads are applied, the shape boundary is al ways assumed to support Neumann boundary conditions (i. e. , isolating or traction-free conditions). In such a setting, shape optimization has a long history and has been studied by many different methods. There is, therefore, a vast literat ure in this field, and we refer the reader to the following short list of books, and references therein [39], [42], [130], [135], [149], [203], [220], [225], [237], [245], [258].

ให้คะแนน eBook นี้

แสดงความเห็นของคุณให้เรารับรู้

ข้อมูลในการอ่าน

สมาร์ทโฟนและแท็บเล็ต
ติดตั้งแอป Google Play Books สำหรับ Android และ iPad/iPhone แอปจะซิงค์โดยอัตโนมัติกับบัญชีของคุณ และช่วยให้คุณอ่านแบบออนไลน์หรือออฟไลน์ได้ทุกที่
แล็ปท็อปและคอมพิวเตอร์
คุณฟังหนังสือเสียงที่ซื้อจาก Google Play โดยใช้เว็บเบราว์เซอร์ในคอมพิวเตอร์ได้
eReader และอุปกรณ์อื่นๆ
หากต้องการอ่านบนอุปกรณ์ e-ink เช่น Kobo eReader คุณจะต้องดาวน์โหลดและโอนไฟล์ไปยังอุปกรณ์ของคุณ โปรดทำตามวิธีการอย่างละเอียดในศูนย์ช่วยเหลือเพื่อโอนไฟล์ไปยัง eReader ที่รองรับ

อ่านซีรีส์นี้ต่อ

รายการอื่นๆ ที่เขียนโดย Gregoire Allaire

eBook ที่คล้ายกัน