Applied Mathematical Sciences: Partial Differential Equations II

· Applied Mathematical Sciences Хэвлэл #116 · Springer Science & Business Media
Электрон ном
529
Хуудас
Үнэлгээ болон шүүмжийг баталгаажуулаагүй  Нэмэлт мэдээлэл авах

Энэ электрон номын тухай

Partial differential equations is a many-faceted subject. Created to describe the mechanical behavior of objects such as vibrating strings and blowing winds, it has developed into a body of material that interacts with many branches of math ematics, such as differential geometry, complex analysis, and harmonic analysis, as weil as a ubiquitous factor in the description and elucidation of problems in mathematical physics. This work is intended to provide a course of study of some of the major aspects of PDE. It is addressed to readers with a background in the basic introductory grad uate mathematics courses in American universities: elementary real and complex analysis, differential geometry, and measure theory. Chapter 1 provides background material on the theory of ordinary differential equations (ODE). This includes both very basic material-on topics such as the existence and uniqueness of solutions to ODE and explicit solutions to equations with constant coefficients and relations to linear algebra-and more sophisticated results-on flows generated by vector fields, connections with differential geom etry, the calculus of differential forms, stationary action principles in mechanics, and their relation to Hamiltonian systems. We discuss equations of relativistic motion as weIl as equations of c1assical Newtonian mechanics. There are also applications to topological results, such as degree theory, the Brouwer fixed-point theorem, and the Jordan-Brouwer separation theorem. In this chapter we also treat scalar first-order PDE, via Hamilton-Jacobi theory.

Энэ электрон номыг үнэлэх

Санал бодлоо хэлнэ үү.

Унших мэдээлэл

Ухаалаг утас болон таблет
Андройд болон iPad/iPhoneGoogle Ном Унших аппыг суулгана уу. Үүнийг таны бүртгэлд автоматаар синк хийх бөгөөд та хүссэн газраасаа онлайн эсвэл офлайнаар унших боломжтой.
Зөөврийн болон ердийн компьютер
Та компьютерийн веб хөтчөөр Google Play-с авсан аудио номыг сонсох боломжтой.
eReaders болон бусад төхөөрөмжүүд
Kobo Цахим ном уншигч гэх мэт e-ink төхөөрөмжүүд дээр уншихын тулд та файлыг татаад төхөөрөмж рүүгээ дамжуулах шаардлагатай болно. Файлуудаа дэмжигддэг Цахим ном уншигч руу шилжүүлэхийн тулд Тусламжийн төвийн дэлгэрэнгүй зааварчилгааг дагана уу.