Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences 3. numurs · Springer Science & Business Media
E-grāmata
198
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

The book has been completely rewritten for this new edition. While most of the material found in the earlier editions has been retained, though in changed form, there are considerable additions, in which extensive use is made of Fourier transform techniques, Hilbert space, and finite difference methods. A condensed version of the present work was presented in a series of lectures as part of the Tata Institute of Fundamental Research -Indian Insti tute of Science Mathematics Programme in Bangalore in 1977. I am indebted to Professor K. G. Ramanathan for the opportunity to participate in this excit ing educational venture, and to Professor K. Balagangadharan for his ever ready help and advice and many stimulating discussions. Very special thanks are due to N. Sivaramakrishnan and R. Mythili, who ably and cheerfully prepared notes of my lectures which I was able to use as the nucleus of the present edition. A word about the choice of material. The constraints imposed by a partial differential equation on its solutions (like those imposed by the environment on a living organism) have an infinite variety of con sequences, local and global, identities and inequalities. Theories of such equations usually attempt to analyse the structure of individual solutions and of the whole manifold of solutions by testing the compatibility of the differential equation with various types of additional constraints.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.