Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences Número 3 · Springer Science & Business Media
eBook
198
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

The book has been completely rewritten for this new edition. While most of the material found in the earlier editions has been retained, though in changed form, there are considerable additions, in which extensive use is made of Fourier transform techniques, Hilbert space, and finite difference methods. A condensed version of the present work was presented in a series of lectures as part of the Tata Institute of Fundamental Research -Indian Insti tute of Science Mathematics Programme in Bangalore in 1977. I am indebted to Professor K. G. Ramanathan for the opportunity to participate in this excit ing educational venture, and to Professor K. Balagangadharan for his ever ready help and advice and many stimulating discussions. Very special thanks are due to N. Sivaramakrishnan and R. Mythili, who ably and cheerfully prepared notes of my lectures which I was able to use as the nucleus of the present edition. A word about the choice of material. The constraints imposed by a partial differential equation on its solutions (like those imposed by the environment on a living organism) have an infinite variety of con sequences, local and global, identities and inequalities. Theories of such equations usually attempt to analyse the structure of individual solutions and of the whole manifold of solutions by testing the compatibility of the differential equation with various types of additional constraints.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.