Applied Mathematical Sciences:Optimization

· Applied Mathematical Sciences 第 124 期 · Springer Science & Business Media
电子书
782
评分和评价未经验证  了解详情

关于此电子书

This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomestransparent.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。