Applied Mathematical Sciences: Linear Multivariable Systems

· Applied Mathematical Sciences Edição nº 11 · Springer Science & Business Media
E-book
358
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This text was developed over a three year period of time (1971- 1973) from a variety of notes and references used in the presentation of a senior/first year graduate level course in the Division of En gineering at Brown University titled Linear System Theory. The in tent of the course was not only to introduce students to the more modern, state-space approach to multivariable control system analysis and design, as opposed to the classical, frequency domain approach, but also to draw analogies between the two approaches whenever and wherever possible. It is therefore felt that the material presented will have broader appeal to practicing engineers than a text devoted exclusively to the state-space approach. It was assumed that students taking the course had also taken, as a prerequisite, an undergraduate course in classical control theory and also were familiar with certain standard linear algebraic notions as well as the theory of ordinary differential equations, although a substantial effort was expended to make the material as self-contained as possible. In particular, Chapter 2 is employed to familiarize the reader with a good deal of the mathematical material employed through out the remainder of the text. Chapters 3 through 5 were drawn, in part, from a number of contemporary state-space and matrix algebraic references, as well as some recent research of the author, especially those portions which deal with polynomial matrices and the differential operator approach.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.