This book presents a development of invariant manifold theory for a spe cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work.
Serier
Bedøm denne e-bog
Fortæl os, hvad du mener.
Oplysninger om læsning
Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.