Applied Mathematical Sciences: Acoustic and Electromagnetic Equations

· Applied Mathematical Sciences Numărul 144 · Springer Science & Business Media
Carte electronică
318
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book is devoted to the study of the acoustic wave equation and of the Maxwell system, the two most common wave equations encountered in physics or in engineering. The main goal is to present a detailed analysis of their mathematical and physical properties. Wave equations are time dependent. However, use of the Fourier trans form reduces their study to that of harmonic systems: the harmonic Helmholtz equation, in the case of the acoustic equation, or the har monic Maxwell system. This book concentrates on the study of these harmonic problems, which are a first step toward the study of more general time-dependent problems. In each case, we give a mathematical setting that allows us to prove existence and uniqueness theorems. We have systematically chosen the use of variational formulations related to considerations of physical energy. We study the integral representations of the solutions. These representa tions yield several integral equations. We analyze their essential properties. We introduce variational formulations for these integral equations, which are the basis of most numerical approximations. Different parts of this book were taught for at least ten years by the author at the post-graduate level at Ecole Poly technique and the University of Paris 6, to students in applied mathematics. The actual presentation has been tested on them. I wish to thank them for their active and constructive participation, which has been extremely useful, and I apologize for forcing them to learn some geometry of surfaces.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.