Applied Mathematical Demography: Edition 2

· Springer Science & Business Media
Carte electronică
441
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

What follows is a new edition of the second in a series of three books providing an account of the mathematical development of demography. The first, Introduction to the Mathematics of Population (Addison-Wesley, 1968), gave the mathematical background. The second, the original of the present volume, was concerned with demography itself. The third in the sequence, Mathematics Through Problems (with John Beekman; Springer Verlag, 1982), supplemented the first two with an ordered sequence of problems and answers. Readers interested in the mathematics may consult the earlier book, republished with revisions by Addison-Wesley in 1977 and still in print. There is no overlap in subject matter between Applied Mathematical Demography and the Introduction to the Mathematics of Population. Three new chapters have been added, dealing with matters that have come recently into the demographic limelight: multi-state calculations, family demogra phy, and heterogeneity. vii PREFACE This book is concerned with commonsense questions about, for instance, the effect of a lowered death rate on the proportion of old people or the effect of abortions on the birth rate. The answers that it reaches are not always commonsense, and we will meet instances in which intuition has to be adjusted to accord with what the mathematics shows to be the case.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.