Apache Mahout: Empfehlen, clustern, klassifizieren

·
· shortcuts āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļĨāđˆāļĄāļ—āļĩāđˆ 158 · entwickler.Press
eBook
37
āļŦāļ™āđ‰āļē
āļĄāļĩāļŠāļīāļ—āļ˜āļīāđŒ
āļ„āļ°āđāļ™āļ™āđāļĨāļ°āļĢāļĩāļ§āļīāļ§āđ„āļĄāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļĒāļ·āļ™āļĒāļąāļ™ Â āļ”āļđāļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļš eBook āđ€āļĨāđˆāļĄāļ™āļĩāđ‰

Personalisierte Produktempfehlungen generieren, Kundencluster bilden, Mails als Spam klassifizieren - das alles macht Apache Mahout mÃķglich. Das kostenlose und quelloffene, auf Java- und Scala-basierte Framework verarbeitet und wertet Massendaten aus. So werden die bekannten Worte „Das kÃķnnte Sie auch interessieren ...“, die uns beim StÃķbern durch die Produktpalette eines Onlineshops begegnen, mit zahlreichen Produktbeispielen ergÃĪnzt, die zu unseren Vorlieben passen kÃķnnten. Hinter Apache Mahout verbirgt sich eine Vielzahl an Algorithmen, mithilfe derer Produktempfehlungen generiert und Kundencluster gebildet werden kÃķnnen. Des Weiteren beschÃĪftigt sich dieser shortcut mit dem Klassifizieren von Daten mittels Apache Mahout, sodass Mails nach Eingang in verschiedene Ordner sortiert werden.

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļœāļđāđ‰āđāļ•āđˆāļ‡

Karsten Voigt arbeitet fÞr die T-Systems Multimedia Solutions als IT-Architekt fÞr Enterprise-E-Commerce-LÃķsungen. Im Rahmen von B2B-Projekten setzt er verschiedene Technologien zur effizienten ProduktprÃĪsentation und Optimierung des Kaufverhaltens ein. David Broßeit studiert Wirtschaftsinformatik an der Hochschule fÞr Technik und Wirtschaft in Dresden. Im Rahmen eines Praxissemesters im Bereich E-Commerce hat er sich mit dem Themenkomplex Big Data und intelligente Produktempfehlungen auseinandergesetzt.

āđƒāļŦāđ‰āļ„āļ°āđāļ™āļ™ eBook āļ™āļĩāđ‰

āđāļŠāļ”āļ‡āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļ„āļļāļ“āđƒāļŦāđ‰āđ€āļĢāļēāļĢāļąāļšāļĢāļđāđ‰

āļ‚āđ‰āļ­āļĄāļđāļĨāđƒāļ™āļāļēāļĢāļ­āđˆāļēāļ™

āļŠāļĄāļēāļĢāđŒāļ—āđ‚āļŸāļ™āđāļĨāļ°āđāļ—āđ‡āļšāđ€āļĨāđ‡āļ•
āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđāļ­āļ› Google Play Books āļŠāļģāļŦāļĢāļąāļš Android āđāļĨāļ° iPad/iPhone āđāļ­āļ›āļˆāļ°āļ‹āļīāļ‡āļ„āđŒāđ‚āļ”āļĒāļ­āļąāļ•āđ‚āļ™āļĄāļąāļ•āļīāļāļąāļšāļšāļąāļāļŠāļĩāļ‚āļ­āļ‡āļ„āļļāļ“ āđāļĨāļ°āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ„āļļāļ“āļ­āđˆāļēāļ™āđāļšāļšāļ­āļ­āļ™āđ„āļĨāļ™āđŒāļŦāļĢāļ·āļ­āļ­āļ­āļŸāđ„āļĨāļ™āđŒāđ„āļ”āđ‰āļ—āļļāļāļ—āļĩāđˆ
āđāļĨāđ‡āļ›āļ—āđ‡āļ­āļ›āđāļĨāļ°āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒ
āļ„āļļāļ“āļŸāļąāļ‡āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļŠāļĩāļĒāļ‡āļ—āļĩāđˆāļ‹āļ·āđ‰āļ­āļˆāļēāļ Google Play āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ§āđ‡āļšāđ€āļšāļĢāļēāļ§āđŒāđ€āļ‹āļ­āļĢāđŒāđƒāļ™āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāđ„āļ”āđ‰
eReader āđāļĨāļ°āļ­āļļāļ›āļāļĢāļ“āđŒāļ­āļ·āđˆāļ™āđ†
āļŦāļēāļāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ­āđˆāļēāļ™āļšāļ™āļ­āļļāļ›āļāļĢāļ“āđŒ e-ink āđ€āļŠāđˆāļ™ Kobo eReader āļ„āļļāļ“āļˆāļ°āļ•āđ‰āļ­āļ‡āļ”āļēāļ§āļ™āđŒāđ‚āļŦāļĨāļ”āđāļĨāļ°āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ‚āļ­āļ‡āļ„āļļāļ“ āđ‚āļ›āļĢāļ”āļ—āļģāļ•āļēāļĄāļ§āļīāļ˜āļĩāļāļēāļĢāļ­āļĒāđˆāļēāļ‡āļĨāļ°āđ€āļ­āļĩāļĒāļ”āđƒāļ™āļĻāļđāļ™āļĒāđŒāļŠāđˆāļ§āļĒāđ€āļŦāļĨāļ·āļ­āđ€āļžāļ·āđˆāļ­āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡ eReader āļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļš

āļ­āđˆāļēāļ™āļ‹āļĩāļĢāļĩāļŠāđŒāļ™āļĩāđ‰āļ•āđˆāļ­

eBook āļ—āļĩāđˆāļ„āļĨāđ‰āļēāļĒāļāļąāļ™