Angular Distribution Analysis in Acoustics

·
· Lecture Notes in Engineering Bok 17 · Springer Science & Business Media
E-bok
202
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The purpose of this book is to j.ir€'~ 0l'l\' a new technique for the experimental investigation of the free wave model sound field of acoustics. The technique is based on the use of spherical harmonic functions of angle. Acousticians frequently encounter random sound fields whose properties may be closely modelled by use of the "free wave" field. This model field is defined by two basic statistical properties: stationarity in time, and homogeneity in space. Stationarity means that any single order statistic measured by a microphone in the field will be independent of the time at which the recording is taken, while homogeneity means that the measurement will also be independent of the mic- phone's position in the field. Furthermore, second order statistics obtained from the measurements of two microphones will depend only on the time lapse between the two recordings, and the relative spatial separation of the micro phones, and not on the microphones' absolute positions in space and time. The free wave field may also (equivalently) be pictured as a collection of plane sound waves which approach an observation position from all angles. These are the "free waves" of the title, with no correlation between waves at different angles and frequencies, although there may exist an angle-dependant plane wave density function. This is a measure of the density of sound energy arriving from different angles. The free wave field has proved to be a simple but remarkably powerful model.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.