Anfangswertprobleme und lineare Randwertprobleme: Ausgabe 2

· Walter de Gruyter GmbH & Co KG
eBook
301
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

    Systeme gewöhnlicher Differentialgleichungen spielen bei der mathematischen Modellierung naturwissenschaftlicher, technischer und ökonomischer Prozesse sowie bei innermathematischen Fragestellungen eine fundamentale Rolle. Dieses zweibändige Lehrbuch vermittelt sowohl für Anfangs- als auch für Randwertprobleme eine Einführung in die Theorie und Praxis moderner numerischer Verfahren, die insbesondere in den heute gängigen Software Paketen zum Einsatz kommen.

    Im Mittelpunkt des ersten Bandes stehen integrative Techniken zur Lösung von Anfangswertproblemen und linearen Randwertproblemen, während sich der zweite Band mit numerischen Verfahren zur Lösung nichtlinearer Randwertprobleme beschäftigt. Die Darstellung des Stoffes erfolgt in leicht verständlicher und anschaulicher Form. Beispiele dienen als Motivation und Einführung in die Problemstellung. Dieses Buch richtet sich an Studierende der Mathematik sowie mathematisch orientierter Fachrichtungen an Universitäten und Fachhochschulen.

    Es eignet sich auch als Nachschlagewerk für Mathematiker, Naturwissenschaftler und Ingenieure.

  • Leicht verständliche und anschauliche Einführung in die Thematik
  • Enthält eine Vielzahl von Beispielen
  • Mit MATLAB-Programmen der wichtigsten Schießverfahren
  • Mit frei verfügbarem Zusatzmaterial online
  • Auch im Set mit Band 2: „Nichtlineare Randwertprobleme" erhältlich

Inhalt
Anfangswertprobleme
Numerische Analyse von Einschrittverfahren
Numerische Analyse von linearen Mehrschrittverfahren
Absolute Stabilität und Steifheit
Allgemeine Lineare Verfahren und Fast-Runge-Kutta Verfahren
Zweipunkt-Randwertprobleme
Numerische Analyse von Einfach-Schießtechniken
Numerische Analyse von Mehrfach-Schießtechniken
Singuläre Anfangs- und Randwertprobleme
Grundlegende Begriffe und Resultate aus der Linearen Algebra
Einige Sätze aus der Theorie der Anfangswertprobleme
Interpolation und numerische Integration

저자 정보

Martin Hermann, Friedrich-Schiller-Universität Jena.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.