A Comprehensive Introduction to Sub-Riemannian Geometry

· Cambridge Studies in Advanced Mathematics Book 181 · Cambridge University Press
Ebook
745
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines.

About the author

Andrei Agrachev is currently a full professor at Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste. His research interests are: sub-Riemannian geometry, mathematical control theory, dynamical systems, differential geometry and topology, singularity theory and real algebraic geometry.

Davide Barilari is Maître de Conférence at Université de Paris VII (Denis Diderot). His research interests are: sub-Riemannian geometry, hypoelliptic operators, curvature and optimal transport.

Ugo Boscain is Research Director at Centre National de la Recherche Scientifique (CNRS), Paris. His research interests are: sub-Riemannian geometry, hypoelliptic operators, quantum mechanics, singularity theory and geometric control.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.