Analyzable Functions and Applications: International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland

· ·
· Contemporary mathematics - American Mathematical Society Kitab 373 · American Mathematical Soc.
E-kitab
371
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

The theory of analyzable functions is a technique used to study a wide class of asymptotic expansion methods and their applications in analysis, difference and differential equations, partial differential equations and other areas of mathematics. Key ideas in the theory of analyzable functions were laid out by Euler, Cauchy, Stokes, Hardy, E. Borel, and others. Then in the early 1980s, this theory took a great leap forward with the work of J. Ecalle.Similar techniques and concepts in analysis, logic, applied mathematics and surreal number theory emerged at essentially the same time and developed rapidly through the 1990s. The links among various approaches soon became apparent and this body of ideas is now recognized as a field of its own with numerous applications. This volume stemmed from the International Workshop on Analyzable Functions and Applications held in Edinburgh (Scotland). The contributed articles, written by many leading experts, are suitable for graduate students and researchers interested in asymptotic methods.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.

Seriyaya davam edin

Ovidiu Costin tərəfindən daha artığı

Oxşar e-kitablar