An Invitation to Modern Enumerative Geometry

· SISSA Springer Series Boek 3 · Springer Nature
E-boek
302
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

This book is based on a series of lectures given by the author at SISSA, Trieste, within the PhD courses Techniques in enumerative geometry (2019) and Localisation in enumerative geometry (2021). The goal of this book is to provide a gentle introduction, aimed mainly at graduate students, to the fast-growing subject of enumerative geometry and, more specifically, counting invariants in algebraic geometry. In addition to the more advanced techniques explained and applied in full detail to concrete calculations, the book contains the proofs of several background results, important for the foundations of the theory. In this respect, this text is conceived for PhD students or research “beginners” in the field of enumerative geometry or related areas. This book can be read as an introduction to Hilbert schemes and Quot schemes on 3-folds but also as an introduction to localisation formulae in enumerative geometry. It is meant to be accessible without a strong background in algebraic geometry; however, three appendices (one on deformation theory, one on intersection theory, one on virtual fundamental classes) are meant to help the reader dive deeper into the main material of the book and to make the text itself as self-contained as possible.

Over de auteur

Andrea T. Ricolfi obtained a PhD in Mathematics at the University of Stavanger (Norway) and is now an assistant professor at SISSA, Trieste. His research interests include the study of moduli spaces of sheaves on algebraic 3-folds and refined invariants attached to them, as well as derived categories of coherent sheaves, quiver representations and Grothendieck rings of varieties.


Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.