An Introduction to Functional Analysis

· Cambridge University Press
eBook
422
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This accessible text covers key results in functional analysis that are essential for further study in the calculus of variations, analysis, dynamical systems, and the theory of partial differential equations. The treatment of Hilbert spaces covers the topics required to prove the Hilbert–Schmidt theorem, including orthonormal bases, the Riesz representation theorem, and the basics of spectral theory. The material on Banach spaces and their duals includes the Hahn–Banach theorem, the Krein–Milman theorem, and results based on the Baire category theorem, before culminating in a proof of sequential weak compactness in reflexive spaces. Arguments are presented in detail, and more than 200 fully-worked exercises are included to provide practice applying techniques and ideas beyond the major theorems. Familiarity with the basic theory of vector spaces and point-set topology is assumed, but knowledge of measure theory is not required, making this book ideal for upper undergraduate-level and beginning graduate-level courses.

저자 정보

James C. Robinson is a professor in the Mathematics Institute at the University of Warwick. He has been the recipient of a Royal Society University Research Fellowship and an Engineering and Physical Sciences Research Council (EPSRC) Leadership Fellowship. He has written six books in addition to his many publications in infinite-dimensional dynamical systems, dimension theory, and partial differential equations.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.