An Introduction to Basic Fourier Series

· Developments in Mathematics Sách 9 · Springer Science & Business Media
Sách điện tử
372
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

It was with the publication of Norbert Wiener's book ''The Fourier In tegral and Certain of Its Applications" [165] in 1933 by Cambridge Univer sity Press that the mathematical community came to realize that there is an alternative approach to the study of c1assical Fourier Analysis, namely, through the theory of c1assical orthogonal polynomials. Little would he know at that time that this little idea of his would help usher in a new and exiting branch of c1assical analysis called q-Fourier Analysis. Attempts at finding q-analogs of Fourier and other related transforms were made by other authors, but it took the mathematical insight and instincts of none other then Richard Askey, the grand master of Special Functions and Orthogonal Polynomials, to see the natural connection between orthogonal polynomials and a systematic theory of q-Fourier Analysis. The paper that he wrote in 1993 with N. M. Atakishiyev and S. K Suslov, entitled "An Analog of the Fourier Transform for a q-Harmonic Oscillator" [13], was probably the first significant publication in this area. The Poisson k~rnel for the contin uous q-Hermite polynomials plays a role of the q-exponential function for the analog of the Fourier integral under considerationj see also [14] for an extension of the q-Fourier transform to the general case of Askey-Wilson polynomials. (Another important ingredient of the q-Fourier Analysis, that deserves thorough investigation, is the theory of q-Fourier series.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.