Structural Health Monitoring by Time Series Analysis and Statistical Distance Measures

· Springer Nature
Ebook
136
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book conducts effective research on data-driven Structural Health Monitoring (SHM), and accordingly presents many novel feature extraction methods by time series analysis and signal processing, to extract reliable damage sensitive features from vibration responses. In this regard, some limitations of time series modeling are dealt with. For decision-making, innovative distance-based novelty detection techniques are presented to detect, locate, and quantify different damage scenarios. The performance of the presented methods is demonstrated via laboratory and full-scale structures along with several comparative studies. The main target audience of the book includes scholars, graduate students working on SHM via statistical pattern recognition in terms of feature extraction and classification for damage diagnosis under environmental and operational variations; it would also be beneficial for practicing engineers whose work involves these topics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.