Algorithmic Probability: Fundamentals and Applications

┬╖ Artificial Intelligence 107 рммрм╣рм┐ ┬╖ One Billion Knowledgeable
рмЗрммрнБрмХрнН
108
рмкрнГрм╖рнНрмарм╛рмЧрнБрнЬрм┐рмХ
рмпрнЛрмЧрнНрнЯ
рм░рнЗрмЯрм┐рмВ рмУ рм╕рморнАрмХрнНрм╖рм╛рмЧрнБрнЬрм┐рмХрнБ рмпрм╛рмЮрнНрмЪ рмХрм░рм╛рмпрм╛рмЗрмирм╛рм╣рм┐рмБ  рмЕрмзрм┐рмХ рмЬрм╛рмгрмирнНрмдрнБ

рмПрм╣рм┐ рмЗрммрнБрмХрнН рммрм┐рм╖рнЯрм░рнЗ

What Is Algorithmic Probability

In the field of algorithmic information theory, algorithmic probability is a mathematical method that assigns a prior probability to a given observation. This method is sometimes referred to as Solomonoff probability. In the 1960s, Ray Solomonoff was the one who came up with the idea. It has applications in the theory of inductive reasoning as well as the analysis of algorithms. Solomonoff combines Bayes' rule and the technique in order to derive probabilities of prediction for an algorithm's future outputs. He does this within the context of his broad theory of inductive inference.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Algorithmic Probability


Chapter 2: Kolmogorov Complexity


Chapter 3: Gregory Chaitin


Chapter 4: Ray Solomonoff


Chapter 5: Solomonoff's Theory of Inductive Inference


Chapter 6: Algorithmic Information Theory


Chapter 7: Algorithmically Random Sequence


Chapter 8: Minimum Description Length


Chapter 9: Computational Learning Theory


Chapter 10: Inductive Probability


(II) Answering the public top questions about algorithmic probability.


(III) Real world examples for the usage of algorithmic probability in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of algorithmic probability' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of algorithmic probability.

рмПрм╣рм┐ рмЗрммрнБрмХрнНтАНрмХрнБ рморнВрм▓рнНрнЯрм╛рмЩрнНрмХрми рмХрм░рмирнНрмдрнБ

рмЖрмкрмг рмХрмг рмнрм╛рммрнБрмЫрмирнНрмдрм┐ рмдрм╛рм╣рм╛ рмЖрмормХрнБ рмЬрмгрм╛рмирнНрмдрнБред

рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмдрмернНрнЯ

рм╕рнНрморм╛рм░рнНрмЯрмлрнЛрми рмУ рмЯрм╛рммрм▓рнЗрмЯ
Google Play Books рмЖрмкрнНрмХрнБ, Android рмУ iPad/iPhone рмкрм╛рмЗрмБ рмЗрмирм╖рнНрмЯрм▓рнН рмХрм░рмирнНрмдрнБред рмПрм╣рм╛ рм╕рнНрм╡рмЪрм╛рм│рм┐рмд рмнрм╛рммрнЗ рмЖрмкрмгрмЩрнНрмХ рмЖрмХрм╛рмЙрмгрнНрмЯрм░рнЗ рм╕рм┐рмЩрнНрмХ рм╣рнЛтАНрмЗрмпрм┐рмм рмПрммрмВ рмЖрмкрмг рмпрнЗрмЙрмБрмарм┐ рмерм╛рмЖрмирнНрмдрнБ рмирм╛ рмХрм╛рм╣рм┐рмБрмХрм┐ рмЖрмирм▓рм╛рмЗрмирнН рмХрм┐рморнНрммрм╛ рмЕрмлрм▓рм╛рмЗрмирнНтАНрм░рнЗ рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмЕрмирнБрмормдрм┐ рмжрнЗрммред
рм▓рм╛рмкрмЯрмк рмУ рмХрморнНрмкрнНрнЯрнБрмЯрм░
рмирм┐рмЬрм░ рмХрморнНрмкрнНрнЯрнБрмЯрм░рнНтАНрм░рнЗ рмерм┐рммрм╛ рн▒рнЗрммрнН рммрнНрм░рм╛рмЙрмЬрм░рнНтАНрмХрнБ рммрнНрнЯрммрм╣рм╛рм░ рмХрм░рм┐ Google Playрм░рнБ рмХрм┐рмгрм┐рмерм┐рммрм╛ рмЕрмбрм┐рмУрммрнБрмХрнНтАНрмХрнБ рмЖрмкрмг рм╢рнБрмгрм┐рмкрм╛рм░рм┐рммрнЗред
рмЗ-рм░рм┐рмбрм░рнН рмУ рмЕрмирнНрнЯ рмбрм┐рмнрм╛рмЗрм╕рнНтАНрмЧрнБрнЬрм┐рмХ
Kobo eReaders рмкрм░рм┐ e-ink рмбрм┐рмнрм╛рмЗрм╕рмЧрнБрмбрм╝рм┐рмХрм░рнЗ рмкрмврм╝рм┐рммрм╛ рмкрм╛рмЗрмБ, рмЖрмкрмгрмЩрнНрмХрнБ рмПрмХ рмлрм╛рмЗрм▓ рмбрм╛рмЙрмирм▓рнЛрмб рмХрм░рм┐ рмПрм╣рм╛рмХрнБ рмЖрмкрмгрмЩрнНрмХ рмбрм┐рмнрм╛рмЗрм╕рмХрнБ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛рмХрнБ рм╣рнЗрммред рм╕рморм░рнНрмерм┐рмд eReadersрмХрнБ рмлрм╛рмЗрм▓рмЧрнБрмбрм╝рм┐рмХ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛ рмкрм╛рмЗрмБ рм╕рм╣рм╛рнЯрмдрм╛ рмХрнЗрмирнНрмжрнНрм░рм░рнЗ рмерм┐рммрм╛ рм╕рммрм┐рм╢рнЗрм╖ рмирм┐рм░рнНрмжрнНрмжрнЗрм╢рм╛рммрм│рнАрмХрнБ рмЕрмирнБрм╕рм░рмг рмХрм░рмирнНрмдрнБред

рм╕рм┐рм░рм┐рмЬрнН рмЬрм╛рм░рм┐ рм░рмЦрмирнНрмдрнБ

Fouad Sabry рмжрнНрн▒рм╛рм░рм╛ рмЕрмзрм┐рмХ

рм╕рморм╛рми рмЗрммрнБрмХ