Algebraic Surfaces: Edition 2

· Springer Science & Business Media
eBook
273
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The aim of the present monograph is to give a systematic exposition of the theory of algebraic surfaces emphasizing the interrelations between the various aspects of the theory: algebro-geometric, topological and transcendental. To achieve this aim, and still remain inside the limits of the allotted space, it was necessary to confine the exposition to topics which are absolutely fundamental. The present work therefore makes no claim to completeness, but it does, however, cover most of the central points of the theory. A presentation of the theory of surfaces, to be effective at all, must above all give the typical methods of proof used in the theory and their underlying ideas. It is especially true of algebraic geometry that in this domain the methods employed are at least as important as the results. The author has therefore avoided, as much as possible, purely formal accounts of results. The proofs given are of necessity condensed, for reasons of space, but no attempt has been made to condense them beyond the point of intelligibility. In many instances, due to exigencies of simplicity and rigor, the proofs given in the text differ, to a greater or less extent, from the proofs given in the original papers.

저자 정보

Biography of Oscar Zariski

Oscar Zariski (24.4.1899-4.7.1986) was born in Kobryn, Poland, and studied at the universities of Kiev and Rome. He held positions at Rome University, John Hopkins University, the University of Illinois and from 1947 at Harvard University.

Zariski's main fields of activity were in algebraic geometry, algebra, algebraic function theory and topology. His most influential results bear on algebraic surfaces, the resolution of singularities and the foundations of algebraic geometry over arbitrary fields.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.