Algebraic Operads: An Algorithmic Companion

· CRC Press
Carte electronică
383
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book presents a systematic treatment of Grobner bases in several contexts. The book builds up to the theory of Grobner bases for operads due to the second author and Khoroshkin as well as various applications of the corresponding diamond lemmas in algebra. Throughout the book, both the mathematical theory and computational methods are emphasized and numerous algorithms, examples, and exercises are provided to clarify and illustrate the concrete meaning of abstract theory.

Despre autor

Murray R. Bremner, PhD, is a professor at the University of Saskatchewan in Canada. He attended that university as an undergraduate, and received an M. Comp. Sc. degree at Concordia University in Montreal. He obtained a doctorate in mathematics at Yale University with a thesis entitled On Tensor Products of Modules over the Virasoro Algebra. Prior to returning to Saskatchewan, he held shorter positions at MSRI in Berkeley and at the University of Toronto. Dr. Bremner authored the book Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications and is a co-translator with M. V. Kotchetov of Selected Works of A. I. Shirshov in English Translation. His primary research interests are algebraic operads, nonassociative algebra, representation theory, and computer algebra.

Vladimir Dotsenko, PhD, is an assistant professor in pure mathematics at Trinity College Dublin in Ireland. He studied at the Mathematical High School 57 in Moscow, Independent University of Moscow, and Moscow State University. His PhD thesis is titled Analogues of Orlik-Solomon Algebras and Related Operads. Dr. Dotsenko also held shorter positions at Dublin Institute for Advanced Studies and the University of Luxembourg. His collaboration with Murray started in February 2013 in CIMAT (Guanajuato, Mexico), where they both lectured in the research school "Associative and Nonassociative Algebras and Dialgebras: Theory and Algorithms." His primary research interests are algebraic operads, homotopical algebra, combinatorics, and representation theory.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.