Additive Combinatorics

·
· Cambridge Studies in Advanced Mathematics Libro 105 · Cambridge University Press
4,0
1 recensione
Ebook
18
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.

Valutazioni e recensioni

4,0
1 recensione

Informazioni sull'autore

Terence Tao is a Professor in the Department of Mathematics at the University of California, Los Angeles. He was awarded the Fields Medal in 2006 for his contributions to partial differential equations, combinatorics, harmonic analysis and additive number theory.

Van H. Vu is a Professor in the Department of Mathematics at Rutgers University, New Jersey.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.