Abstractionism: Essays in Philosophy of Mathematics

·
· Oxford University Press
E-boek
368
Pagina's
Geschikt
Beoordelingen en reviews worden niet geverifieerd. Meer informatie
29% prijsdaling op 19 aug

Over dit e-boek

Abstractionism, which is a development of Frege's original Logicism, is a recent and much debated position in the philosophy of mathematics. This volume contains 16 original papers by leading scholars on the philosophical and mathematical aspects of Abstractionism. After an extensive editors' introduction to the topic of abstractionism, five contributions deal with the semantics and meta-ontology of Abstractionism, as well as the so-called Caesar Problem. Four papers then discuss abstractionist epistemology, focusing on the idea of implicit definitions and non-evidential warrants (entitlements) to account for a priori mathematical knowledge. This is followed by four chapters concerning the mathematics of Abstractionism, in particular the issue of impredicativity, the Bad Company objection, and the question of abstractionist set theory. Finally, the last section of the book contains three contributions that discuss Frege's application constraint within an abstractionist setting.

Over de auteur

Philip A. Ebert received his PhD in Philosophy from the University of St Andrews in 2006 and was a Post Doctoral Fellow at the Arché Centre from 2005-2007. He is currently a Senior Lecturer at the University of Stirling. ; Marcus Rossberg received his PhD in Philosophy from the University of St Andrews in 2006 and was a Post Doctoral Fellow at the Arché Centre from 2005-2008. He is currently an Associate Professor at the University of Connecticut.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.