Abstractionism: Essays in Philosophy of Mathematics

·
· Oxford University Press
E-bog
368
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger
Prisfald på 29 % 19. aug.

Om denne e-bog

Abstractionism, which is a development of Frege's original Logicism, is a recent and much debated position in the philosophy of mathematics. This volume contains 16 original papers by leading scholars on the philosophical and mathematical aspects of Abstractionism. After an extensive editors' introduction to the topic of abstractionism, five contributions deal with the semantics and meta-ontology of Abstractionism, as well as the so-called Caesar Problem. Four papers then discuss abstractionist epistemology, focusing on the idea of implicit definitions and non-evidential warrants (entitlements) to account for a priori mathematical knowledge. This is followed by four chapters concerning the mathematics of Abstractionism, in particular the issue of impredicativity, the Bad Company objection, and the question of abstractionist set theory. Finally, the last section of the book contains three contributions that discuss Frege's application constraint within an abstractionist setting.

Om forfatteren

Philip A. Ebert received his PhD in Philosophy from the University of St Andrews in 2006 and was a Post Doctoral Fellow at the Arché Centre from 2005-2007. He is currently a Senior Lecturer at the University of Stirling. ; Marcus Rossberg received his PhD in Philosophy from the University of St Andrews in 2006 and was a Post Doctoral Fellow at the Arché Centre from 2005-2008. He is currently an Associate Professor at the University of Connecticut.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.