Absolute Stability of Nonlinear Control Systems

· Mathematics and Its Applications Boek 5 · Springer Science & Business Media
5,0
1 review
E-boek
178
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

As is well-known, a control system always works under a variety of accidental or continued disturbances. Therefore, in designing and analysing the control system, stability is the first thing to be considered. Classic control theory was basically limited to a discussion of linear systems with constant coefficients. The fundamental tools for such studies were the Routh-Hurwitz algebraic criterion and the Nyquist geometric criterion. However, modern control theory mainly deals with nonlinear problems. The stability analysis of nonlinear control systems based on Liapunov stability theory can be traced back to the Russian school of stability. In 1944, the Russian mathematician Lurie, a specialist in control theory, discussed the stability of an autopilot. The well-known Lurie problem and the concept of absolute stability are presented, which is of universal significance both in theory and practice. Up until the end of the 1950's, the field of absolute stability was monopolized mainly by Russian scholars such as A. 1. Lurie, M. A. Aizeman, A. M. Letov and others. At the beginning of the 1960's, some famous American mathematicians such as J. P. LaSalle, S. Lefschetz and R. E. Kalman engaged themself in this field. Meanwhile, the Romanian scholar Popov presented a well-known frequency criterion and consequently ma de a decisive breakthrough in the study of absolute stability.

Beoordelingen en reviews

5,0
1 review

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.