A Fixed-Point Farrago

┬╖ Springer
рдИ-рдкреБрд╕реНрддрдХ
221
рдкреЗрдЬ
рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкрд░реАрдХреНрд╖рдгреЗ рдпрд╛рдВрдЪреА рдкрдбрддрд╛рд│рдгреА рдХреЗрд▓реЗрд▓реА рдирд╛рд╣реА ┬ардЕрдзрд┐рдХ рдЬрд╛рдгреВрди рдШреНрдпрд╛

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд╛рд╡рд┐рд╖рдпреА

This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volumeтАЩs ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory.The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on BrouwerтАЩs theorem and its application to John NashтАЩs work; the third applies BrouwerтАЩs theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and RyllтАУNardzewski surrounding fixed points for families of affine maps.

рд▓реЗрдЦрдХрд╛рд╡рд┐рд╖рдпреА

Joel H. Shapiro is an adjunct professor of Mathematics and Statistics at Portland State University. He received his PhD from the University of Michigan.

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд▓рд╛ рд░реЗрдЯрд┐рдВрдЧ рджреНрдпрд╛

рддреБрдореНрд╣рд╛рд▓рд╛ рдХрд╛рдп рд╡рд╛рдЯрддреЗ рддреЗ рдЖрдореНрд╣рд╛рд▓рд╛ рд╕рд╛рдВрдЧрд╛.

рд╡рд╛рдЪрди рдорд╛рд╣рд┐рддреА

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рдЖрдгрд┐ рдЯреЕрдмрд▓реЗрдЯ
Android рдЖрдгрд┐ iPad/iPhone рд╕рд╛рдареА Google Play рдмреБрдХ рдЕтАНреЕрдк рдЗрдВрд╕реНтАНрдЯреЙрд▓ рдХрд░рд╛. рд╣реЗ рддреБрдордЪреНтАНрдпрд╛ рдЦрд╛рддреНтАНрдпрд╛рдиреЗ рдЖрдкреЛрдЖрдк рд╕рд┐рдВрдХ рд╣реЛрддреЗ рдЖрдгрд┐ рддреБрдореНтАНрд╣реА рдЬреЗрдереЗ рдХреБрдареЗ рдЕрд╕рд╛рд▓ рддреЗрдереВрди рддреБрдореНтАНрд╣рд╛рд▓рд╛ рдСрдирд▓рд╛рдЗрди рдХрд┐рдВрд╡рд╛ рдСрдлрд▓рд╛рдЗрди рд╡рд╛рдЪрдгреНтАНрдпрд╛рдЪреА рдЕрдиреБрдорддреА рджреЗрддреЗ.
рд▓реЕрдкрдЯреЙрдк рдЖрдгрд┐ рдХреЙрдВрдкреНрдпреБрдЯрд░
рддреБрдореНрд╣реА рддреБрдордЪреНрдпрд╛ рдХрд╛рдБрдкреНрдпреБрдЯрд░рдЪрд╛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЭрд░ рд╡рд╛рдкрд░реВрди Google Play рд╡рд░ рдЦрд░реЗрджреА рдХреЗрд▓реЗрд▓реА рдСрдбрд┐рдУрдмреБрдХ рдРрдХреВ рд╢рдХрддрд╛.
рдИрд╡рд╛рдЪрдХ рдЖрдгрд┐ рдЗрддрд░ рдбрд┐рд╡реНрд╣рд╛рдЗрд╕реЗрд╕
Kobo eReaders рд╕рд╛рд░рдЦреНрдпрд╛ рдИ-рдЗрдВрдХ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рд╡рд╛рдЪрдгреНтАНрдпрд╛рд╕рд╛рдареА, рддреБрдореНрд╣реА рдПрдЦрд╛рджреА рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░реВрди рддреА рддреБрдордЪреНтАНрдпрд╛ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреЗ рдЖрд╡рд╢реНрдпрдХ рдЖрд╣реЗ. рд╕рдкреЛрд░реНрдЯ рдЕрд╕рд▓реЗрд▓реНрдпрд╛ eReaders рд╡рд░ рдлрд╛рдЗрд▓ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреНрдпрд╛рд╕рд╛рдареА, рдорджрдд рдХреЗрдВрджреНрд░ рдордзреАрд▓ рддрдкрд╢реАрд▓рд╡рд╛рд░ рд╕реВрдЪрдирд╛ рдлреЙрд▓реЛ рдХрд░рд╛.