Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

One Billion Knowledgeable · AI-narrated by Gabriel (from Google)
Audiobook
7 hr 24 min
Unabridged
Eligible
AI-narrated
Ratings and reviews aren’t verified  Learn More
Want a 29 min sample? Listen anytime, even offline. 
Add

About this audiobook

1: Kumulative Verteilungsfunktion – Stellt die CDF und ihre grundlegende Rolle in der Wahrscheinlichkeitsrechnung vor.


2: Cauchy-Verteilung – Untersucht diese wichtige Wahrscheinlichkeitsverteilung und ihre Anwendungen.


3: Erwarteter Wert – Bespricht das Konzept erwarteter Ergebnisse in statistischen Prozessen.


4: Zufallsvariable – Untersucht die Rolle von Zufallsvariablen in Wahrscheinlichkeitsmodellen.


5: Unabhängigkeit (Wahrscheinlichkeitstheorie) – Analysiert unabhängige Ereignisse und ihre Bedeutung.


6: Zentraler Grenzwertsatz – Beschreibt die Auswirkungen dieses grundlegenden Theorems auf die Datenapproximation.


7: Wahrscheinlichkeitsdichtefunktion – Umreißt das PDF und seine Verbindung zu kontinuierlichen Verteilungen.


8: Konvergenz von Zufallsvariablen – Erklärt Konvergenztypen und ihre Bedeutung in der Robotik.


9: Momentgenerierende Funktion – Behandelt Funktionen, die Verteilungseigenschaften zusammenfassen.


10: Wahrscheinlichkeitsgenerierende Funktion – Stellt generierende Funktionen in der Wahrscheinlichkeitsrechnung vor.


11: Bedingte Erwartung – Untersucht erwartete Werte unter bestimmten bekannten Bedingungen.


12: Gemeinsame Wahrscheinlichkeitsverteilung – Beschreibt die Wahrscheinlichkeit mehrerer zufälliger Ereignisse.


13: Lévy-Verteilung – Untersucht diese Verteilung und ihre Relevanz in der Robotik.


14: Erneuerungstheorie – Untersucht die Theorie, die für die Modellierung sich wiederholender Ereignisse in der Robotik entscheidend ist.


15: Dynkin-System – Erörtert die Rolle dieses Systems in der Wahrscheinlichkeitsstruktur.


16: Empirische Verteilungsfunktion – Betrachtet die Schätzung der Verteilung auf Grundlage von Daten.


17: Charakteristische Funktion – Analysiert Funktionen, die Verteilungseigenschaften erfassen.


18: Pi-System – Überprüft Pi-Systeme zum Erstellen von Wahrscheinlichkeitsmaßen.


19: Wahrscheinlichkeitsintegraltransformation – Führt die Transformation von Zufallsvariablen ein.


20: Beweise für die Konvergenz von Zufallsvariablen – Bietet Beweise, die für die Zuverlässigkeit der Robotik unerlässlich sind.


21: Faltung von Wahrscheinlichkeitsverteilungen – Untersucht die Kombination von Verteilungen in der Robotik.

Rate this audiobook

Tell us what you think.

Listening information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can read books purchased on Google Play using your computer's web browser.

More by Fouad Sabry

Similar audiobooks

Narrated by Gabriel