Fractals: A Very Short Introduction

¡ Tantor Media Inc
āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
3 āϘāĻŖā§āϟāĻž 58 āĻŽāĻŋāύāĻŋāϟ
āϏāĻ‚āĻ•ā§āώāĻŋāĻĒā§āϤ āύ⧟
āωāĻĒāϝ⧁āĻ•ā§āϤ
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ
24 āĻŽāĻŋāύāĻŋāϟ āϏāĻŽā§Ÿā§‡āϰ āύāĻŽā§āύāĻž āĻĒ⧇āϤ⧇ āϚāĻžāύ? āϝ⧇āϕ⧋āύāĻ“ āϏāĻŽā§Ÿ āĻļ⧁āύ⧁āύ, āĻāĻŽāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ⧇ āĻĨāĻžāĻ•āϞ⧇āĻ“āĨ¤Â 
āϜ⧁⧜⧁āύ

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

From the contours of coastlines to the outlines of clouds, and the branching of trees, fractal shapes can be found everywhere in nature. In this Very Short Introduction, Kenneth Falconer explains the basic concepts of fractal geometry, which produced a revolution in our mathematical understanding of patterns in the twentieth century, and explores the wide range of applications in science, and in aspects of economics.

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āϕ⧀āĻ­āĻžāĻŦ⧇ āĻļ⧁āύāĻŦ⧇āύ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
āφāĻĒāύāĻŋ āφāĻĒāύāĻžāϰ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ Google Play āϤ⧇ āϕ⧇āύāĻž āĻŦāχāϗ⧁āϞāĻŋ āĻĒ⧜āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤