Fractals: A Very Short Introduction

¡ Tantor Media Inc
āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•
3 āϘāĻŖā§āϟāĻž 58 āĻŽāĻŋāύāĻŋāϟ
āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ
āϝ⧋āĻ—ā§āϝ
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āĻāϟāĻž 24 āĻŽāĻŋāύāĻŋāϟ āύāĻŽā§āύāĻž āϞāĻžāϗ⧇ āύ⧇āĻ•āĻŋ? āϝāĻŋāϕ⧋āύ⧋ āϏāĻŽā§ŸāϤ⧇ āĻļ⧁āύāĻ•, āφāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ āĻšā§ˆ āĻĨāĻžāϕ⧋āρāϤ⧇āĻ“āĨ¤Â 
āϝ⧋āĻ— āϕ⧰āĻ•

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

From the contours of coastlines to the outlines of clouds, and the branching of trees, fractal shapes can be found everywhere in nature. In this Very Short Introduction, Kenneth Falconer explains the basic concepts of fractal geometry, which produced a revolution in our mathematical understanding of patterns in the twentieth century, and explores the wide range of applications in science, and in aspects of economics.

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻļ⧁āύāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ āφāĻĒ⧁āύāĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ•āĻŋāϤāĻžāĻĒāϏāĻŽā§‚āĻš āĻĒāĻĸāĻŧāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤