Data Science

┬╖
┬╖ Gildan Media ┬╖ Chris Sorensen рджреНрд╡рд╛рд░реЗ рд╕реБрдирд╛рд╡рдгреА
рек.реи
резрен рдкрд░реАрдХреНрд╖рдг
рдСрдбрд┐рдУрдмреБрдХ
5 рддрд╛рд╕ 51 рдорд┐рдирд┐рдЯ
рд╕рдВрдХреНрд╖рд┐рдкреНрдд рди рдХреЗрд▓реЗрд▓реЗ
рдкрд╛рддреНрд░
рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкрд░реАрдХреНрд╖рдгреЗ рдпрд╛рдВрдЪреА рдкрдбрддрд╛рд│рдгреА рдХреЗрд▓реЗрд▓реА рдирд╛рд╣реА ┬ардЕрдзрд┐рдХ рдЬрд╛рдгреВрди рдШреНрдпрд╛
39 рдорд┐рдирд┐рдЯ рдЪрд╛ рдирдореБрдирд╛ рд╣рд╡рд╛ рдЖрд╣реЗ рдХрд╛? рдХрдзреАрд╣реА рдРрдХрд╛, рдЕрдЧрджреА рдСрдлрд▓рд╛рдЗрди рдЕрд╕рддрд╛рдирд╛рджреЗрдЦреАрд▓.┬а
рдЬреЛрдбрд╛

рдпрд╛ рдСрдбрд┐рдУрдмреБрдХрд╡рд┐рд╖рдпреА

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкреБрдирд░рд╛рд╡рд▓реЛрдХрдиреЗ

рек.реи
резрен рдкрд░реАрдХреНрд╖рдгреЗ

рд▓реЗрдЦрдХрд╛рд╡рд┐рд╖рдпреА

John D. Kelleher is a professor of computer science and the Academic Leader of the Information, Communication, and Entertainment Research Institute at the Dublin Institute of Technology. He is the coauthor of Fundamentals of Machine Learning for Predictive Data Analytics (MIT Press).

Brendan Tierney, Oracle ACE Director, is an independent consultant and lectures on Data Mining and Advanced Databases in the Dublin Institute of Technology in Ireland. He has 23+ years of extensive experience working in the areas of Data Mining, Data Warehousing, Data Architecture and Database Design.

Chris Sorensen is a veteran audiobook narrator with over 160 titles to his name. He has received three AudioFile Earphones Awards, and his recording of Sent by Margaret Peterson Haddix was selected as one of the Best Audiobooks of 2010 by AudioFile magazine. He is a member of SAG-AFTRA and the APA.

рдпрд╛ рдСрдбрд┐рдУрдмреБрдХрд▓рд╛ рд░реЗрдЯ рдХрд░рд╛

рддреБрдореНрд╣рд╛рд▓рд╛ рдХрд╛рдп рд╡рд╛рдЯрддреЗ рддреЗ рдЖрдореНрд╣рд╛рд▓рд╛ рд╕рд╛рдВрдЧрд╛.

рдРрдХрдгреНрдпрд╛рд╡рд┐рд╖рдпреА рдорд╛рд╣рд┐рддреА

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рдЖрдгрд┐ рдЯреЕрдмрд▓реЗрдЯ
Android рдЖрдгрд┐ iPad/iPhone рд╕рд╛рдареА Google Play рдмреБрдХ рдЕтАНреЕрдк рдЗрдВрд╕реНтАНрдЯреЙрд▓ рдХрд░рд╛. рд╣реЗ рддреБрдордЪреНтАНрдпрд╛ рдЦрд╛рддреНтАНрдпрд╛рдиреЗ рдЖрдкреЛрдЖрдк рд╕рд┐рдВрдХ рд╣реЛрддреЗ рдЖрдгрд┐ рддреБрдореНтАНрд╣реА рдЬреЗрдереЗ рдХреБрдареЗ рдЕрд╕рд╛рд▓ рддреЗрдереВрди рддреБрдореНтАНрд╣рд╛рд▓рд╛ рдСрдирд▓рд╛рдЗрди рдХрд┐рдВрд╡рд╛ рдСрдлрд▓рд╛рдЗрди рд╡рд╛рдЪрдгреНтАНрдпрд╛рдЪреА рдЕрдиреБрдорддреА рджреЗрддреЗ.
рд▓реЕрдкрдЯреЙрдк рдЖрдгрд┐ рдХреЙрдВрдкреНрдпреБрдЯрд░
рдЖрдкрд▓реНтАНрдпрд╛ рд╕рдВрдЧрдгрдХрд╛рдЪреНрдпрд╛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЭрд░рдЪрд╛ рд╡рд╛рдкрд░ рдХрд░реВрди рддреБрдореНрд╣реА Google Play рд╡рд░реВрди рдЦрд░реЗрджреА рдХреЗрд▓реЗрд▓реА рдкреБрд╕реНтАНрддрдХреЗ рд╡рд╛рдЪреВ рд╢рдХрддрд╛.

Brendan Tierney рдХрдбреАрд▓ рдЖрдгрдЦреА

рд╕рдорд╛рди рдСрдбрд┐рдУрдмреБрдХ

Chris Sorensen рдпрд╛рдВрдЪреЗ рдирд┐рд╡реЗрджрди