Data Science

┬╖
┬╖ Gildan Media ┬╖ Chris Sorensen рдХреА рдЖрд╡рд╛рдЬрд╝ рдореЗрдВ
4.2
17 рд╕рдореАрдХреНрд╖рд╛рдПрдВ
рдСрдбрд┐рдпреЛ рдмреБрдХ
5рдШрдВрдЯрд╛ 51 рдорд┐рдирдЯ
рдЬрд╝реНрдпрд╛рджрд╛ рд╢рдмреНрджреЛрдВ рдореЗрдВ
рдпреЛрдЧреНрдп
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ
рдХреНрдпрд╛ 39 рдорд┐рдирдЯ рдХреЗ рд▓рд┐рдП рдЖрдЬрд╝рдорд╛рдиреЗ рдореЗрдВ рдЖрдкрдХреА рджрд┐рд▓рдЪрд╕реНрдкреА рд╣реИ? рдХрднреА рднреА рд╕реБрдиреЗрдВ, рдЪрд╛рд╣реЗ рдЖрдк рдСрдлрд╝рд▓рд╛рдЗрди рд╣реА рдХреНрдпреЛрдВ рди рд╣реЛрдВ┬а
рдЬреЛрдбрд╝реЗрдВ

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдПрдВ

4.2
17 рд╕рдореАрдХреНрд╖рд╛рдПрдВ

рд▓реЗрдЦрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ

John D. Kelleher is a professor of computer science and the Academic Leader of the Information, Communication, and Entertainment Research Institute at the Dublin Institute of Technology. He is the coauthor of Fundamentals of Machine Learning for Predictive Data Analytics (MIT Press).

Brendan Tierney, Oracle ACE Director, is an independent consultant and lectures on Data Mining and Advanced Databases in the Dublin Institute of Technology in Ireland. He has 23+ years of extensive experience working in the areas of Data Mining, Data Warehousing, Data Architecture and Database Design.

Chris Sorensen is a veteran audiobook narrator with over 160 titles to his name. He has received three AudioFile Earphones Awards, and his recording of Sent by Margaret Peterson Haddix was selected as one of the Best Audiobooks of 2010 by AudioFile magazine. He is a member of SAG-AFTRA and the APA.

рдЗрд╕ рдСрдбрд┐рдпреЛ рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдЬрд╛рдирдХрд╛рд░реА рдХреЛ рд╕реБрдирдирд╛

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНтАНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИрдВ рдкреБрд╕реНтАНрддрдХреЗрдВ рдкрдврд╝ рд╕рдХрддреЗ рд╣реИрдВ.

Brendan Tierney рдХреА рдУрд░ рд╕реЗ рдЬрд╝реНрдпрд╛рджрд╛

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдСрдбрд┐рдпреЛрдмреБрдХ

Chris Sorensen рдХреА рдЖрд╡рд╛рдЬрд╝ рдореЗрдВ