Data Science

¡
¡ Gildan Media ¡ Chris Sorensenā§° āĻĻā§āĻŦāĻžā§°āĻž āĻŦāĻ°ā§āĻŖāĻŋāϤ
ā§Ē.⧍
ā§§ā§­ āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž
āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•
5 āϘāĻŖā§āϟāĻž 51 āĻŽāĻŋāύāĻŋāϟ
āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ
āϝ⧋āĻ—ā§āϝ
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āĻāϟāĻž 39 āĻŽāĻŋāύāĻŋāϟ āύāĻŽā§āύāĻž āϞāĻžāϗ⧇ āύ⧇āĻ•āĻŋ? āϝāĻŋāϕ⧋āύ⧋ āϏāĻŽā§ŸāϤ⧇ āĻļ⧁āύāĻ•, āφāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ āĻšā§ˆ āĻĨāĻžāϕ⧋āρāϤ⧇āĻ“āĨ¤Â 
āϝ⧋āĻ— āϕ⧰āĻ•

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻžāϏāĻŽā§‚āĻš

ā§Ē.⧍
ā§§ā§­ āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž

āϞāĻŋāĻ–āϕ⧰ āĻŦāĻŋāώāϝāĻŧ⧇

John D. Kelleher is a professor of computer science and the Academic Leader of the Information, Communication, and Entertainment Research Institute at the Dublin Institute of Technology. He is the coauthor of Fundamentals of Machine Learning for Predictive Data Analytics (MIT Press).

Brendan Tierney, Oracle ACE Director, is an independent consultant and lectures on Data Mining and Advanced Databases in the Dublin Institute of Technology in Ireland. He has 23+ years of extensive experience working in the areas of Data Mining, Data Warehousing, Data Architecture and Database Design.

Chris Sorensen is a veteran audiobook narrator with over 160 titles to his name. He has received three AudioFile Earphones Awards, and his recording of Sent by Margaret Peterson Haddix was selected as one of the Best Audiobooks of 2010 by AudioFile magazine. He is a member of SAG-AFTRA and the APA.

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻļ⧁āύāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ āφāĻĒ⧁āύāĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ•āĻŋāϤāĻžāĻĒāϏāĻŽā§‚āĻš āĻĒāĻĸāĻŧāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤

Brendan Tierneyā§° āĻĻā§āĻŦāĻžā§°āĻž āφ⧰⧁ āĻ…āϧāĻŋāĻ•

āĻāϕ⧇āϧ⧰āĻŖā§° āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•

Chris Sorensenā§° āĻĻā§āĻŦāĻžā§°āĻž āĻŦāĻ°ā§āĻŖāĻŋāϤ