Algorithmic Probability: Fundamentals and Applications

ยท Artificial Intelligence แˆ˜แŒฝแˆแ 107 ยท One Billion Knowledgeable ยท แ‰ AI-Mason (แŠจGoogle) แ‹จแ‰ฐแ‰ฐแˆจแŠจ
แ‰ฐแˆฐแˆš แˆ˜แŒฝแˆแ
2 แˆฐแ‹“ 37 แ‹ฐแ‰‚แ‰ƒ
แ‹ซแˆ‹แŒ แˆจ
แ‰ฅแ‰
แ‰ AI-แ‹จแ‰ฐแ‰ฐแˆจแŠจ
แ‹จแ‰ฐแˆฐแŒกแ‰ต แ‹ฐแˆจแŒƒแ‹Žแ‰ฝ แŠฅแŠ“ แŒแˆแŒˆแˆ›แ‹Žแ‰ฝ แ‹จแ‰ฐแˆจแŒ‹แŒˆแŒก แŠ แ‹ญแ‹ฐแˆ‰แˆ ย แ‹จแ‰ แˆˆแŒ  แˆˆแˆ˜แˆจแ‹ณแ‰ต
15 แ‹ฐแ‰‚แ‰ƒ แŠ“แˆ™แŠ“ แ‹ญแˆแˆแŒ‹แˆ‰? แ‰ แˆ›แŠ•แŠ›แ‹แˆ แŒŠแ‹œ แ‹ซแ‹ณแˆแŒกแฃ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญแˆ แŠฅแŠ•แŠณย 
แŠ แŠญแˆ

แˆตแˆˆแ‹šแˆ… แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแ

What Is Algorithmic Probability


In the field of algorithmic information theory, algorithmic probability is a mathematical method that assigns a prior probability to a given observation. This method is sometimes referred to as Solomonoff probability. In the 1960s, Ray Solomonoff was the one who came up with the idea. It has applications in the theory of inductive reasoning as well as the analysis of algorithms. Solomonoff combines Bayes' rule and the technique in order to derive probabilities of prediction for an algorithm's future outputs. He does this within the context of his broad theory of inductive inference.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Algorithmic Probability


Chapter 2: Kolmogorov Complexity


Chapter 3: Gregory Chaitin


Chapter 4: Ray Solomonoff


Chapter 5: Solomonoff's Theory of Inductive Inference


Chapter 6: Algorithmic Information Theory


Chapter 7: Algorithmically Random Sequence


Chapter 8: Minimum Description Length


Chapter 9: Computational Learning Theory


Chapter 10: Inductive Probability


(II) Answering the public top questions about algorithmic probability.


(III) Real world examples for the usage of algorithmic probability in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of algorithmic probability' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of algorithmic probability.

แˆตแˆˆแ‹ฐแˆซแˆฒแ‹

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual masterโ€™s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

แˆˆแ‹šแˆ… แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแ แ‹ฐแˆจแŒƒ แ‹ญแˆตแŒก

แˆแŠ• แŠฅแŠ•แ‹ฐแˆšแ‹ซแˆตแ‰ก แ‹ญแŠ•แŒˆแˆฉแŠ•แข

แ‹จแˆ›แ‹ณแˆ˜แŒฅ แˆ˜แˆจแŒƒ

แ‹˜แˆ˜แŠ“แ‹Š แˆตแˆแŠฎแ‰ฝ แŠฅแŠ“ แŒกแ‰ฃแ‹Šแ‹Žแ‰ฝ
แ‹จGoogle Play แˆ˜แŒฝแˆแแ‰ต แˆ˜แ‰ฐแŒแ‰ แˆชแ‹ซแ‹แŠ• แˆˆAndroid แŠฅแŠ“ iPad/iPhone แ‹ซแ‹แˆญแ‹ฑแข แŠจแŠฅแˆญแˆตแ‹Ž แˆ˜แˆˆแ‹ซ แŒ‹แˆญ แ‰ แˆซแˆตแˆฐแˆญ แ‹ญแˆ˜แˆณแˆฐแˆ‹แˆ แŠฅแŠ“ แ‰ฃแˆ‰แ‰ แ‰ต แ‹จแ‰ตแˆ แ‰ฆแ‰ณ แ‰ แˆ˜แˆตแˆ˜แˆญ แˆ‹แ‹ญ แŠฅแŠ“ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญ แŠฅแŠ•แ‹ฒแ‹ซแАแ‰ก แ‹ซแˆตแ‰ฝแˆแ‹Žแ‰ณแˆแข
แˆ‹แ•แ‰ถแ–แ‰ฝ แŠฅแŠ“ แŠฎแˆแ’แ‹แ‰ฐแˆฎแ‰ฝ
แ‹จแŠฎแˆแ’แ‹แ‰ฐแˆญแ‹Ž แ‹จแ‹ตแˆญ แŠ แˆณแˆฝ แ‰ฐแŒ แ‰…แˆ˜แ‹ Google Play แˆ‹แ‹ญ แ‹จแŒˆแ‹Ÿแ‰ธแ‹แŠ• แˆ˜แŒฝแˆแแ‰ต แˆ›แŠ•แ‰ แ‰ฅ แ‹ญแ‰ฝแˆ‹แˆ‰แข

แ‰ฐแŠจแ‰ณแ‰ณแ‹ฉแŠ• แ‹ญแ‰€แŒฅแˆ‰

แ‰ฐแŒจแˆ›แˆช แ‰ Fouad Sabry

แ‰ฐแˆ˜แˆณแˆณแ‹ญ แ‰ฐแˆณแˆš แˆ˜แŒฝแˆแแ‰ต