The Art of Doing Algebraic Geometry

· · · ·
· Springer Nature
E-book
424
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This volume is dedicated to Ciro Ciliberto on the occasion of his 70th birthday and contains refereed papers, offering an overview of important parts of current research in algebraic geometry and related research in the history of mathematics. It presents original research as well as surveys, both providing a valuable overview of the current state of the art of the covered topics and reflecting the versatility of the scientific interests of Ciro Ciliberto.


Sobre o autor

Thomas Dedieu is Maitre de Conférence at the University of Toulouse. His research area is algebraic geometry, and more specifically K3 surfaces, canonical curves, and their extensions, Severi varieties, and projective geometry.

Flaminio Flamini is Full Professor of Geometry at the University of Roma Tor Vergata. His research area is algebraic geometry, especially curves, surfaces and vector bundles, their Hilbert schemes and their moduli.

Claudio Fontanari is Associate Professor of Geometry at the University of Trento. His research area is algebraic geometry, especially algebraic curves, moduli spaces and higher dimensional projective varieties.

Concettina Galati is Associate Professor of Geometry at the University of Calabria. Her research area is algebraic geometry, and more specifically Severi varieties, deformation theory of curve and surface singularities, moduli spaces of curves and Brill-Noether theory.

Rita Pardini is Full Professor of Geometry at the University of Pisa. Her research area is algebraic geometry, especially surfaces and their moduli, irregular varieties and coverings.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.