State Space Modeling of Time Series

┬╖ Springer Science & Business Media
рмЗрммрнБрмХрнН
315
рмкрнГрм╖рнНрмарм╛рмЧрнБрнЬрм┐рмХ
рм░рнЗрмЯрм┐рмВ рмУ рм╕рморнАрмХрнНрм╖рм╛рмЧрнБрнЬрм┐рмХрнБ рмпрм╛рмЮрнНрмЪ рмХрм░рм╛рмпрм╛рмЗрмирм╛рм╣рм┐рмБ ┬армЕрмзрм┐рмХ рмЬрм╛рмгрмирнНрмдрнБ

рмПрм╣рм┐ рмЗрммрнБрмХрнН рммрм┐рм╖рнЯрм░рнЗ

model's predictive capability? These are some of the questions that need to be answered in proposing any time series model construction method. This book addresses these questions in Part II. Briefly, the covariance matrices between past data and future realizations of time series are used to build a matrix called the Hankel matrix. Information needed for constructing models is extracted from the Hankel matrix. For example, its numerically determined rank will be the di mension of the state model. Thus the model dimension is determined by the data, after balancing several sources of error for such model construction. The covariance matrix of the model forecasting error vector is determined by solving a certain matrix Riccati equation. This matrix is also the covariance matrix of the innovation process which drives the model in generating model forecasts. In these model construction steps, a particular model representation, here referred to as balanced, is used extensively. This mode of model representation facilitates error analysis, such as assessing the error of using a lower dimensional model than that indicated by the rank of the Hankel matrix. The well-known Akaike's canonical correlation method for model construc tion is similar to the one used in this book. There are some important differ ences, however. Akaike uses the normalized Hankel matrix to extract canonical vectors, while the method used in this book does not normalize the Hankel ma trix.

рмПрм╣рм┐ рмЗрммрнБрмХрнНтАНрмХрнБ рморнВрм▓рнНрнЯрм╛рмЩрнНрмХрми рмХрм░рмирнНрмдрнБ

рмЖрмкрмг рмХрмг рмнрм╛рммрнБрмЫрмирнНрмдрм┐ рмдрм╛рм╣рм╛ рмЖрмормХрнБ рмЬрмгрм╛рмирнНрмдрнБред

рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмдрмернНрнЯ

рм╕рнНрморм╛рм░рнНрмЯрмлрнЛрми рмУ рмЯрм╛рммрм▓рнЗрмЯ
Google Play Books рмЖрмкрнНрмХрнБ, Android рмУ iPad/iPhone рмкрм╛рмЗрмБ рмЗрмирм╖рнНрмЯрм▓рнН рмХрм░рмирнНрмдрнБред рмПрм╣рм╛ рм╕рнНрм╡рмЪрм╛рм│рм┐рмд рмнрм╛рммрнЗ рмЖрмкрмгрмЩрнНрмХ рмЖрмХрм╛рмЙрмгрнНрмЯрм░рнЗ рм╕рм┐рмЩрнНрмХ рм╣рнЛтАНрмЗрмпрм┐рмм рмПрммрмВ рмЖрмкрмг рмпрнЗрмЙрмБрмарм┐ рмерм╛рмЖрмирнНрмдрнБ рмирм╛ рмХрм╛рм╣рм┐рмБрмХрм┐ рмЖрмирм▓рм╛рмЗрмирнН рмХрм┐рморнНрммрм╛ рмЕрмлрм▓рм╛рмЗрмирнНтАНрм░рнЗ рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмЕрмирнБрмормдрм┐ рмжрнЗрммред
рм▓рм╛рмкрмЯрмк рмУ рмХрморнНрмкрнНрнЯрнБрмЯрм░
рмирм┐рмЬрм░ рмХрморнНрмкрнНрнЯрнБрмЯрм░рнНтАНрм░рнЗ рмерм┐рммрм╛ рн▒рнЗрммрнН рммрнНрм░рм╛рмЙрмЬрм░рнНтАНрмХрнБ рммрнНрнЯрммрм╣рм╛рм░ рмХрм░рм┐ Google Playрм░рнБ рмХрм┐рмгрм┐рмерм┐рммрм╛ рмЕрмбрм┐рмУрммрнБрмХрнНтАНрмХрнБ рмЖрмкрмг рм╢рнБрмгрм┐рмкрм╛рм░рм┐рммрнЗред
рмЗ-рм░рм┐рмбрм░рнН рмУ рмЕрмирнНрнЯ рмбрм┐рмнрм╛рмЗрм╕рнНтАНрмЧрнБрнЬрм┐рмХ
Kobo eReaders рмкрм░рм┐ e-ink рмбрм┐рмнрм╛рмЗрм╕рмЧрнБрмбрм╝рм┐рмХрм░рнЗ рмкрмврм╝рм┐рммрм╛ рмкрм╛рмЗрмБ, рмЖрмкрмгрмЩрнНрмХрнБ рмПрмХ рмлрм╛рмЗрм▓ рмбрм╛рмЙрмирм▓рнЛрмб рмХрм░рм┐ рмПрм╣рм╛рмХрнБ рмЖрмкрмгрмЩрнНрмХ рмбрм┐рмнрм╛рмЗрм╕рмХрнБ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛рмХрнБ рм╣рнЗрммред рм╕рморм░рнНрмерм┐рмд eReadersрмХрнБ рмлрм╛рмЗрм▓рмЧрнБрмбрм╝рм┐рмХ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛ рмкрм╛рмЗрмБ рм╕рм╣рм╛рнЯрмдрм╛ рмХрнЗрмирнНрмжрнНрм░рм░рнЗ рмерм┐рммрм╛ рм╕рммрм┐рм╢рнЗрм╖ рмирм┐рм░рнНрмжрнНрмжрнЗрм╢рм╛рммрм│рнАрмХрнБ рмЕрмирнБрм╕рм░рмг рмХрм░рмирнНрмдрнБред