Solitons, Instantons, and Twistors

· Oxford Graduate Texts in Mathematics Книга 19 · OUP Oxford
Электронная книга
376
Количество страниц
Можно добавить
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-time dimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yang-Mills and Einstein equations require twistor theory. Both techniques rely on an ability to represent nonlinear equations as compatibility conditions for overdetermined systems of linear differential equations. The book provides a self-contained and accessible introduction to the subject. It starts with an introduction to integrability of ordinary and partial differential equations. Subsequent chapters explore symmetry analysis, gauge theory, gravitational instantons, twistor transforms, and anti-self-duality equations. The three appendices cover basic differential geometry, complex manifold theory, and the exterior differential system.

Об авторе

Maciej Dunajski read physics in Lodz, Poland and received a PhD in mathematics from Oxford University where he held a Senior Scholarship at Merton College. After spending four years as a lecturer in the Mathematical Institute in Oxford where he was a member of Roger Penrose's research group, he moved to Cambridge, where holds a Fellowship and lectureship at Clare College and a Newton Trust Lectureship at the Department of Applied Mathematics and Theoretical Physics. Dunajski specialises in twistor theory and differential geometric approaches to integrability and solitons. He is married with two sons.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.