Representation Theory of Lie Groups

┬╖
┬╖ IAS/Park City Mathematics Series 8 рммрм╣рм┐ ┬╖ American Mathematical Soc.
рмЗрммрнБрмХрнН
340
рмкрнГрм╖рнНрмарм╛рмЧрнБрнЬрм┐рмХ
рм░рнЗрмЯрм┐рмВ рмУ рм╕рморнАрмХрнНрм╖рм╛рмЧрнБрнЬрм┐рмХрнБ рмпрм╛рмЮрнНрмЪ рмХрм░рм╛рмпрм╛рмЗрмирм╛рм╣рм┐рмБ ┬армЕрмзрм┐рмХ рмЬрм╛рмгрмирнНрмдрнБ

рмПрм╣рм┐ рмЗрммрнБрмХрнН рммрм┐рм╖рнЯрм░рнЗ

This book contains written versions of the lectures given at the PCMI Graduate Summer School on the representation theory of Lie groups. The volume begins with lectures by A. Knapp and P. Trapa outlining the state of the subject around the year 1975, specifically, the fundamental results of Harish-Chandra on the general structure of infinite-dimensional representations and the Langlands classification.

Additional contributions outline developments in four of the most active areas of research over the past 20 years. The clearly written articles present results to date, as follows: R. Zierau and L. Barchini discuss the construction of representations on Dolbeault cohomology spaces. D. Vogan describes the status of the Kirillov-Kostant "philosophy of coadjoint orbits" for unitary representations. K. Vilonen presents recent advances in the Beilinson-Bernstein theory of "localization". And Jian-Shu Li covers Howe's theory of "dual reductive pairs".

Each contributor to the volume presents the topics in a unique, comprehensive, and accessible manner geared toward advanced graduate students and researchers. Students should have completed the standard introductory graduate courses for full comprehension of the work. The book would also serve well as a supplementary text for a course on introductory infinite-dimensional representation theory.

Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

┬а

рмПрм╣рм┐ рмЗрммрнБрмХрнНтАНрмХрнБ рморнВрм▓рнНрнЯрм╛рмЩрнНрмХрми рмХрм░рмирнНрмдрнБ

рмЖрмкрмг рмХрмг рмнрм╛рммрнБрмЫрмирнНрмдрм┐ рмдрм╛рм╣рм╛ рмЖрмормХрнБ рмЬрмгрм╛рмирнНрмдрнБред

рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмдрмернНрнЯ

рм╕рнНрморм╛рм░рнНрмЯрмлрнЛрми рмУ рмЯрм╛рммрм▓рнЗрмЯ
Google Play Books рмЖрмкрнНрмХрнБ, Android рмУ iPad/iPhone рмкрм╛рмЗрмБ рмЗрмирм╖рнНрмЯрм▓рнН рмХрм░рмирнНрмдрнБред рмПрм╣рм╛ рм╕рнНрм╡рмЪрм╛рм│рм┐рмд рмнрм╛рммрнЗ рмЖрмкрмгрмЩрнНрмХ рмЖрмХрм╛рмЙрмгрнНрмЯрм░рнЗ рм╕рм┐рмЩрнНрмХ рм╣рнЛтАНрмЗрмпрм┐рмм рмПрммрмВ рмЖрмкрмг рмпрнЗрмЙрмБрмарм┐ рмерм╛рмЖрмирнНрмдрнБ рмирм╛ рмХрм╛рм╣рм┐рмБрмХрм┐ рмЖрмирм▓рм╛рмЗрмирнН рмХрм┐рморнНрммрм╛ рмЕрмлрм▓рм╛рмЗрмирнНтАНрм░рнЗ рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмЕрмирнБрмормдрм┐ рмжрнЗрммред
рм▓рм╛рмкрмЯрмк рмУ рмХрморнНрмкрнНрнЯрнБрмЯрм░
рмирм┐рмЬрм░ рмХрморнНрмкрнНрнЯрнБрмЯрм░рнНтАНрм░рнЗ рмерм┐рммрм╛ рн▒рнЗрммрнН рммрнНрм░рм╛рмЙрмЬрм░рнНтАНрмХрнБ рммрнНрнЯрммрм╣рм╛рм░ рмХрм░рм┐ Google Playрм░рнБ рмХрм┐рмгрм┐рмерм┐рммрм╛ рмЕрмбрм┐рмУрммрнБрмХрнНтАНрмХрнБ рмЖрмкрмг рм╢рнБрмгрм┐рмкрм╛рм░рм┐рммрнЗред
рмЗ-рм░рм┐рмбрм░рнН рмУ рмЕрмирнНрнЯ рмбрм┐рмнрм╛рмЗрм╕рнНтАНрмЧрнБрнЬрм┐рмХ
Kobo eReaders рмкрм░рм┐ e-ink рмбрм┐рмнрм╛рмЗрм╕рмЧрнБрмбрм╝рм┐рмХрм░рнЗ рмкрмврм╝рм┐рммрм╛ рмкрм╛рмЗрмБ, рмЖрмкрмгрмЩрнНрмХрнБ рмПрмХ рмлрм╛рмЗрм▓ рмбрм╛рмЙрмирм▓рнЛрмб рмХрм░рм┐ рмПрм╣рм╛рмХрнБ рмЖрмкрмгрмЩрнНрмХ рмбрм┐рмнрм╛рмЗрм╕рмХрнБ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛рмХрнБ рм╣рнЗрммред рм╕рморм░рнНрмерм┐рмд eReadersрмХрнБ рмлрм╛рмЗрм▓рмЧрнБрмбрм╝рм┐рмХ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛ рмкрм╛рмЗрмБ рм╕рм╣рм╛рнЯрмдрм╛ рмХрнЗрмирнНрмжрнНрм░рм░рнЗ рмерм┐рммрм╛ рм╕рммрм┐рм╢рнЗрм╖ рмирм┐рм░рнНрмжрнНрмжрнЗрм╢рм╛рммрм│рнАрмХрнБ рмЕрмирнБрм╕рм░рмг рмХрм░рмирнНрмдрнБред