Neutrosophic Multi-Criteria Decision Making: Special Issue

· ·
· Infinite Study
E-boek
208
Pagina's
Geschikt
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

The notion of a neutrosophic quadruple BCK/BCI-number is considered, and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. iven subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given.

Over de auteur

Florentin Smarandache, polymath, professor of mathematics, scientist, writer, and artist. He got his M. Sc. in Mathematics and Computer Science from the University of Craiova, Romania, and his Ph. D in Mathematics from the State University of Kishinev and pursued Post-Doctoral studies in Applied Mathematics at Okayama University of Sciences, Japan. He is the founder of neutrosophic set, logic, probability, and statistics and, since 1995, has published hundreds of papers on neutrosophic physics, superluminal and instantaneous physics, unmatter, absolute theory of relativity, redshift and blueshift due to the medium gradient and refraction index besides the Doppler effect, paradoxism, outerart, neutrosophy as a new branch of philosophy, Law of Included Multiple-Middle, degre of dependence and independence between the neutrosophic components, refined neutrosophic over-under-off-set, neutrosophic overset, neutrosophic triplet and duplet structures, DSmT, and so on in numerous peer-reviewed international journals and books and he has presented papers and plenary lectures in many international conferences around the world.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.