Computational and Statistical Genomics aims to help researchers deal with current genomic challenges. Topics covered include:
overviews of the role of supercomputers in genomics research, the existing challenges and directions in image processing for microarray technology, and web-based tools for microarray data analysis;
approaches to the global modeling and analysis of gene regulatory networks and transcriptional control, using methods, theories, and tools from signal processing, machine learning, information theory, and control theory;
state-of-the-art tools in Boolean function theory, time-frequency analysis, pattern recognition, and unsupervised learning, applied to cancer classification, identification of biologically active sites, and visualization of gene expression data;
crucial issues associated with statistical analysis of microarray data, statistics and stochastic analysis of gene expression levels in a single cell, statistically sound design of microarray studies and experiments; and
biological and medical implications of genomics research.
O autorovi
Wei Zhang is an Associate Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center Ilya Shmulevich is an Assistant Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center.
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.