Bernoulli Free-Boundary Problems

·
· American Mathematical Soc.
5,0
1 recenzija
E-knjiga
70
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

When a domain in the plane is specified by the requirement that there exists a harmonic function which is zero on its boundary and additionally satisfies a prescribed Neumann condition there, the boundary is called a Bernoulli free boundary. (The boundary is 'free' because the domain is not known a priori and the name Bernoulli was originally associated with such problems in hydrodynamics.) Questions of existence, multiplicity or uniqueness, and regularity of free boundaries for prescribed data need to be addressed and their solutions lead to nonlinear problems.In this paper an equivalence is established between Bernoulli free-boundary problems and a class of equations for real-valued functions of one real variable. The authors impose no restriction on the amplitudes or shapes of free boundaries, nor on their smoothness. Therefore the equivalence is global, and valid even for very weak solutions. An essential observation here is that the equivalent equations can be written as nonlinear Riemann-Hilbert problems and the theory of complex Hardy spaces in the unit disc has a central role. An additional useful fact is that they have gradient structure, their solutions being critical points of a natural Lagrangian. This means that a canonical Morse index can be assigned to free boundaries and the Calculus of Variations becomes available as a tool for the study. Some rather natural conjectures about the regularity of free boundaries remain unresolved.

Ocjene i recenzije

5,0
1 recenzija

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.